Stellar rotation period inference with Gaussian processes
نویسندگان
چکیده
منابع مشابه
Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods
Gaussian processes (GPs) are a flexible class of methods with state of the art performance on spatial statistics applications. However, GPs require O(n) computations and O(n) storage, and popular GP kernels are typically limited to smoothing and interpolation. To address these difficulties, Kronecker methods have been used to exploit structure in the GP covariance matrix for scalability, while ...
متن کاملScalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
In this paper we propose an efficient, scalable non-parametric Gaussian process model for inference on Poisson point processes. Our model does not resort to gridding the domain or to introducing latent thinning points. Unlike competing models that scale as O(n) over n data points, our model has a complexity O(nk) where k n. We propose a MCMC sampler and show that the model obtained is faster, m...
متن کاملStructured Variational Inference for Coupled Gaussian Processes
Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, theses GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it c...
متن کاملStructured Variational Inference for Coupled Gaussian Processes
Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, these GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it ca...
متن کاملODE parameter inference using adaptive gradient matching with Gaussian processes
Parameter inference in mechanistic models based on systems of coupled differential equations is a topical yet computationally challenging problem, due to the need to follow each parameter adaptation with a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the International Astronomical Union
سال: 2015
ISSN: 1743-9213,1743-9221
DOI: 10.1017/s1743921316002738